

twist conformation (C_2 symmetry) is characterized by $\phi = 18.54, \dots^\circ$, and the envelope (C_s symmetry) by $\phi = 0.36, \dots^\circ$. A typical Q value is 0.35 Å in the furanoid ring of sucrose (Brown & Levy, 1973). In the same way, it can be shown that the conformation of the rings in BN52022 are nearly the same as in BN52021, except that the ring *C* of BN52022 *B* is almost an envelope, ring *E* is intermediate between twist and envelope in BN52022 *A*, and envelope in BN52022 *B*; ring *F* has an intermediate conformation in BN52022 *B*.

The crystal of BN52020 contains van der Waals interactions and four hydrogen bonds: O2H···O100 ($-x, 0.5+y, -1.5-z$), 2.712 (6) Å, O3H···O100 ($1-x, 0.5+y, -1.5-z$), 2.774 (6) Å, O8···HO100 [$x, 1+y, z$], 2.865 (6) Å and O9···HO100 ($-0.5-x, -1-y, 0.5+z$), 2.726 Å. The distance O4···O10 ($-0.5+x, -0.5-y, 1-z$), 2.859 (6) Å is also significantly shorter than the sum of two oxygen van der Waals radii, currently about 3.0 Å. According to Nyburg & Faerman (1985), O4 linked to a single carbon atom by a double bond should have a spherical shape with a radius of 1.54 Å. So the possibility of a non-spherical shape for O(10) in this lactone can be inferred. In the crystal of BN52022, there is a rather complex network of hydrogen bonds involving ethanol and water molecules. Only some C—OH···O angles and OH···O distances are consistent with linear hydrogen bonds: the H included in O22H···O28 and O2H···O202. O23H···O21 and O3H···O1 are intramolecular hydrogen bonds. The other —OH groups participate in

bifurcated hydrogen bonds, but it was not possible to identify their hydrogen positions.

The authors are grateful to M. M. Vermeire for technical assistance in diffractometry measurements.

References

BRAQUET, P. (1984). *GB Patent* **8**, 418–424.
 BRAQUET, P. & GODFROID, J. J. (1986). *Trends Pharmacol. Sci.* **7**, 397–403.
 BROWN, G. M. & LEVY, H. A. (1973). *Acta Cryst.* **B29**, 790–797.
 CREMER, D. & POPLE, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1354–1358.
 DUPONT, L., DIDEBERG, O., GERMAIN, G. & BRAQUET, P. (1986). *Acta Cryst.* **C42**, 1759–1762.
 EGERT, E. & SHELDICK, G. M. (1985). *Acta Cryst.* **A41**, 262–268.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99–101. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
 LUGER, P. & BÜLOW, R. (1983). *J. Appl. Cryst.* **16**, 431–432.
 NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). *Acta Cryst.* **A24**, 351–359.
 NYBURG, S. C. (1980). *BMFIT. Best Molecular Fit Program*. Univ. of Toronto, Canada (local version).
 NYBURG, S. C. & FAERMAN, C. H. (1985). *Acta Cryst.* **B41**, 274–279.
 OKABE, K., YAMADA, K., YAMARURA, S. & TAKADA, S. (1967). *J. Chem. Soc. C*, **21**, 2201–2206.
 SAKABE, N., TAKADA, S. & OKABE, K. (1967). *Chem. Commun.* pp. 259–261.
 SHELDICK, G. M. (1976). *SHELX76*. Program for crystal structure determination. Univ. of Cambridge, England.
 SHELDICK, G. M. (1986). *SHELXS86*. Program for the solution of crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1987). **C43**, 2381–2384

Crystallographic Studies and Physicochemical Properties of π -Electron Systems. XVI. The Structure of *N,N*-Diethyl-3,4-dinitroaniline: Non-Additivity of Substituent Effect on the Geometry of the Benzene Ring

BY J. K. MAURIN

Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01224 Warsaw, Poland

AND T. M. KRYGOWSKI

Department of Chemistry, Warsaw University, ul. Pasteura 1, 02093 Warsaw, Poland

(Received 24 February 1987; accepted 17 June 1987)

Abstract. $C_{10}H_{13}N_3O_4$, $M_r = 239.23$, monoclinic, $P2_1/c$, $a = 14.379$ (2), $b = 9.814$ (1), $c = 17.793$ (2) Å, $\beta = 109.71$ (1)°, $V = 2363.9$ (5) Å³, $Z = 8$, $D_m = 1.330$, $D_x = 1.344$ (10) g cm⁻³; $\lambda(Cu K\alpha) = 1.54178$ Å, $\mu = 9.63$ cm⁻¹, $F(000) = 1008$, room temperature. Final $R = 0.0479$, $wR = 0.048$ for 2443 counter intensities.

The mean e.s.d.'s for bond lengths between heavy atoms are 0.004–0.009 Å and 0.25° for valence angles. Non-additivity of valence angles has been studied by the use of the substituent angular parameters of Domenicano & Murray-Rust [*Tetrahedron Lett.* (1979), **24**, 2283–2286] and Norrestam &

Table 1. Fractional coordinates ($\times 10^4$), U_{eq} ($\times 10^4$) for non-hydrogen atoms

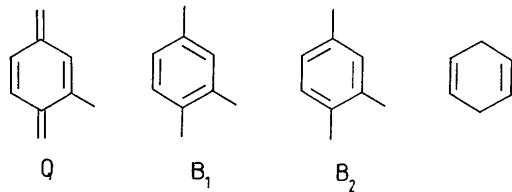
	x	y	z	U_{eq} (\AA^2)
C41	-392 (2)	1079 (3)	1352 (2)	460 (16)
C42	640 (2)	1074 (3)	1496 (2)	486 (18)
C43	1076 (2)	1 (3)	1262 (1)	459 (17)
C44	546 (2)	-1130 (3)	880 (2)	479 (17)
C45	-461 (2)	-1144 (3)	735 (2)	521 (19)
C46	-914 (2)	-75 (3)	966 (2)	517 (19)
N41	-831 (2)	2129 (2)	1589 (1)	560 (15)
N42	2160 (2)	91 (3)	1475 (2)	648 (19)
N43	988 (2)	-2248 (3)	601 (2)	658 (18)
C47	-1911 (2)	2188 (4)	1396 (2)	703 (25)
C48	-119 (3)	4422 (4)	1551 (3)	880 (33)
C49	-274 (3)	3276 (4)	2053 (2)	695 (24)
C410	-2223 (3)	1516 (6)	2038 (3)	926 (34)
O41	2473 (2)	790 (3)	1058 (2)	1100 (22)
O42	2656 (2)	-500 (3)	2067 (2)	974 (21)
O43	1842 (2)	-2130 (2)	631 (2)	1004 (20)
O44	499 (2)	-3257 (2)	338 (2)	973 (20)
CB1	5495 (2)	400 (3)	4046 (2)	539 (19)
CB2	4452 (2)	477 (3)	3811 (2)	491 (18)
CB3	4001 (2)	1686 (3)	3844 (2)	450 (17)
CB4	4526 (2)	2877 (3)	4092 (2)	482 (17)
CB5	5545 (2)	2837 (3)	4297 (2)	577 (20)
CB6	6016 (2)	1632 (3)	4271 (2)	597 (21)
NB1	5960 (2)	-790 (2)	4032 (2)	676 (17)
NB2	2913 (2)	1709 (3)	3490 (2)	593 (17)
NB3	4062 (2)	4129 (3)	4212 (1)	570 (16)
CB7	5426 (2)	-2079 (3)	3798 (2)	663 (24)
CB8	5034 (3)	-2335 (5)	2910 (2)	925 (31)
CB9	7055 (3)	-893 (6)	4333 (3)	804 (43)
CB10	7369 (5)	-485 (6)	3642 (3)	1263 (51)
CB11	6886 (6)	-708 (16)	3835 (7)	621 (53)
CB12	7744 (11)	-905 (17)	4597 (7)	715 (50)
OB1	2458 (2)	811 (2)	3683 (2)	917 (19)
OB2	2542 (1)	2590 (3)	2999 (1)	770 (16)
OB3	3328 (1)	4061 (2)	4408 (1)	749 (16)
OB4	4453 (2)	5215 (2)	4131 (1)	756 (17)

Schepper [Acta Chem. Scand. Ser. A (1981), **35**, 91–103]. The percentage of quinoid structure contribution has been estimated by the HOSE model [Krygowski, Anulewicz & Kruszewski (1983). Acta Cryst. B **39**, 732–739].

Introduction. As a continuation of our studies on derivatives of *p*-nitroaniline (Maurin & Krygowski, 1987a,b), the title compound, hereafter abbreviated DDA, was chosen to analyse the role of overcrowding of substituents on the geometry of the benzene ring.

Experimental. Orange prismatic crystals were grown from ethanol solution. Monoclinic symmetry was estimated from oscillation and Weissenberg photographs. A crystal *ca* $0.3 \times 0.3 \times 0.3$ mm was mounted on a Syntex $P2_1$ single-crystal diffractometer. D_m measured by flotation at 293 K in aqueous solution of KI. Systematic absences: $h0l$, l odd, $0k0$ k odd, space group $P2_1/c$. Cell constants determined by the least-squares treatment of 15 reflections with 2θ values between 22.6 and 28.1°. Intensities collected at room temperature using Cu $K\alpha$ radiation monochromated by graphite up to $2\theta = 115.0^\circ$, $-15 \leq h \leq 14$, $0 \leq k \leq 10$ and $0 \leq l \leq 19$, ω – 2θ scan mode. Profile analysis according to Lehmann & Larsen (1974), no significant variation for 2 standard reflections, 3206 unique intensities collected, 155 of them systematically absent,

Table 2. Bond lengths (Å) and valence angles (°); distances corrected for libration are in square brackets


C41–C42	1.419 (4)	[1.425]	CB1–CB2	1.416 (4)	[1.423]
CA2–CA3	1.361 (4)	1.367	CB2–CB3	1.364 (4)	1.367
CA3–C44	1.387 (4)	1.395	CB3–CB4	1.381 (4)	1.387
CA4–C45	1.383 (4)	1.388	CB4–CB5	1.387 (4)	1.392
CA5–C46	1.369 (5)	1.375	CB5–CB6	1.372 (5)	1.375
CA6–C41	1.403 (4)	1.412	CB6–CB1	1.407 (4)	1.414
CA3–N42	1.477 (4)	1.484	CB3–NB2	1.477 (3)	1.483
CA4–N43	1.438 (4)	1.446	CB4–NB3	1.448 (4)	1.450
NA2–O41	1.205 (5)	1.211	NB2–OB1	1.214 (4)	1.221
N42–O42	1.202 (4)	1.209	NB2–OB2	1.216 (3)	1.222
NA3–O43	1.217 (4)	1.223	NB3–OB3	1.220 (4)	1.226
NA3–O44	1.213 (4)	1.220	NB3–OB4	1.236 (3)	1.244
CA1–N41	1.349 (4)	1.354	CB1–NB1	1.349 (4)	1.354
NA1–C47	1.473 (4)	1.481	NB1–CB7	1.465 (4)	1.472
CA7–C410	1.513 (7)	1.521	CB7–CB8	1.509 (5)	1.517
NA1–C49	1.464 (4)	1.473	NB1–CB9	1.486 (4)	1.492
CA9–C48	1.499 (6)	1.507	CB9–CB10	1.501 (9)	1.509
CB11–CB12			NB1–CB11	1.490 (11)	
			CB2–CB3–NB2	1.165 (2)	
			NB2–CB3–CB4	1.207 (2)	
			CB3–NB2–OB1	1.175 (2)	
			CB3–NB2–OB2	1.175 (3)	
			OB1–NB2–OB2	1.249 (2)	
			CB3–CB4–NB3	1.224 (2)	
			NB3–CB4–CB5	1.190 (2)	
			CB4–NB3–OB3	1.188 (2)	
			CB4–NB3–OB4	1.177 (3)	
			OB3–NB3–OB4	1.235 (3)	
			CB2–CB1–NB1	1.215 (3)	
			NB1–CB1–CB6	1.219 (3)	
			CB1–NB1–CB7	1.225 (2)	
			CB1–NB1–CB9	1.216 (3)	
			CB7–NB1–CB9	1.157 (3)	
			NB1–CB7–CB9	1.146 (3)	
			NB1–CB9–CB10	1.052 (4)	
			NB1–CB11–CB12	1.079 (11)	
			CB1–NB1–CB11	1.164 (7)	

2443 classified as observed [$F_o > 3.92\sigma(F)$]. Corrections for Lorentz–polarization effects and for secondary extinction but not for absorption. The structure was solved using *MULTAN80* (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) and refined using *SHELX76* (Sheldrick, 1976). Atomic structure factors supplied by the program. *E* map gave position of 22 non-hydrogen atoms. Other heavy atoms were located from $\Delta\rho$ map ($R = 0.314$). Isotropic refinement gave an R value of 0.166, anisotropic refinement gave 0.099. Location of hydrogen atoms and refinement of their positions led to final $R = 0.061$ and $wR = 0.062$ with $(\Delta/\sigma)_{\text{max}} = 0.18$ and mean value 0.05. Weights were based on $w_i(F) = G/\sigma^2(F_i)$. The final difference density map showed two maxima of heights 0.66 and 0.5 e Å⁻³ in the ethyl-group region in

one molecule. Application of the partial-disorder model for this group led to final $R = 0.0479$ and $wR = 0.0483$. Difference Fourier peaks -0.193 and $0.208 \text{ e } \text{\AA}^{-3}$. Δ/σ values in final cycle of the refinement were in the same range as before. The s.o.f. factors for the disordered ethyl group were 0.7624 and 0.2376 , respectively.

Discussion. The final atomic parameters are given in Table 1,* and Table 2 presents bond lengths and valence angles, measured (first column) and calculated by the use of angular parameters (Domenicano & Murray-Rust, 1979; Norrestam & Schepper, 1981). Fig. 1 presents a projection of the cell contents along the x axis, and the assignment of atoms. No significant short contacts are observed for DDA. Bond lengths and angles of the substituted ring are significantly deformed from C_6 symmetry.

The changes in bond lengths due to the substituent have been studied by the HOSE model (Krygowski, Anulewicz & Kruszewski, 1983). This model utilizes the geometry of the molecule to calculate its stabilization energy, and then to estimate the weights of the contributions of the canonical structures taken into account. The following results are obtained.

* Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44169 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

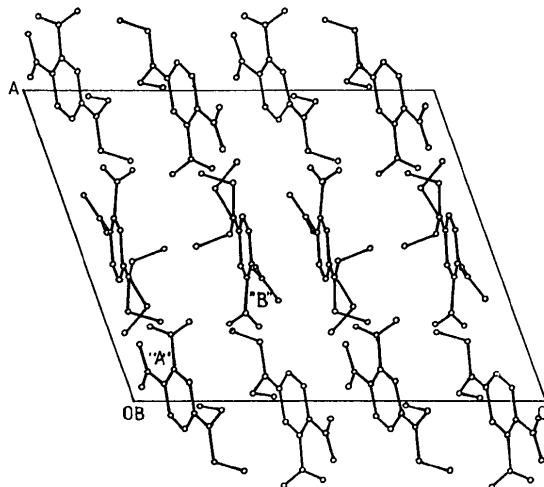


Fig. 1. Projection of the cell contents along b .

For molecule A $\%B_1 = 25.2$, $\%B_2 = 33.2$ and $\%Q = 41.6$, whereas for molecule B $\%B_1 = 27.7$, $\%B_2 = 31.1$ and $\%Q = 41.2$. As a rule the C5–C6 bond length is longer by ca 0.008 \AA than the C2–C3 one, most probably owing to the electronegativity effect of the nitro group at C3 as required by the Walsh rule (Domenicano, Vaciago & Coulson, 1975). As a result $\%B_2 > \%B_1$ for both molecules of DDA. The C1–N1 bond length, 1.354 \AA [corrected for libration by THMB6 (Trueblood, 1984)], is significantly shorter than the same bond in aniline [1.402 \AA (Lister, Tyler & Hog, 1974)] and almost of the same length as in *p*-nitroaniline (Colapietro, Domenicano, Marciante & Portalone, 1982) for which $\%Q = 40.4$.

The changes in valence angles are analysed by using angular substituent parameters (Domenicano & Murray-Rust, 1979; Norrestam & Schepper, 1981) for the NO_2 group non-coplanar with the ring plane.

The angles deviating most from additivity are those at C1, C2 and C5. This result cannot be easily rationalized. The sum of the exocyclic valence angles N3–C4–C3 and C4–C3–N2 is 245.2° for the A molecule and 243.1° for the B molecule. These values are in line with the angles between the NO_2 planes and the benzene ring: 9.27 and 80.07° for the A molecule and 32.28 and 47.61° for the B molecule.

Evidently, in the first case steric hindrance between both nitro groups may lead to larger values of the above-mentioned sum of angles. Another consequence is a lengthening of the C4–C3 bond [$1.395 (4) \text{ \AA}$] in comparison with molecule B where no such interactions were observed and hence the bond length is $1.387 (4) \text{ \AA}$. Similar effects were observed in *o*-nitro-substituted benzoic acids (Więckowski & Krygowski, 1985; Grabowski & Krygowski, 1985).

This work was supported by project RP.II.10 from the Polish Ministry of Science and Higher Education.

References

- COLAPIETRO, M., DOMENICANO, A., MARCIANTE, A. & PORTALONE, G. (1982). *Z. Naturforsch. Teil B*, **37**, 1309–1316.
- DOMENICANO, A. & MURRAY-RUST, P. (1979). *Tetrahedron Lett.* **24**, 2283–2286.
- DOMENICANO, A., VACIAGO, A. & COULSON, C. A. (1975). *Acta Cryst. B* **31**, 221–234.
- GRABOWSKI, S. J. & KRYGOWSKI, T. M. (1985). *Acta Cryst. C* **41**, 1224–1226.
- KRYGOWSKI, T. M., ANULEWICZ, R. & KRUSZEWSKI, J. (1983). *Acta Cryst. B* **39**, 732–739.
- LEHMANN, M. S. & LARSEN, F. K. (1974). *Acta Cryst. A* **30**, 580–584.
- LISTER, D. G., TYLER, J. K. & HOG, J. H. (1974). *J. Mol. Struct.* pp. 253–264.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). *MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data*. Univs. of York, England, and Louvain, Belgium.

MAURIN, J. K. & KRYGOWSKI, T. M. (1987a). *Acta Cryst. C* **43**, 64–66.
 MAURIN, J. K. & KRYGOWSKI, T. M. (1987b). *J. Mol. Struct.* **158**, 359–367.
 NORRESTAM, R. & SCHEPPER, L. (1981). *Acta Chem. Scand. Ser A*, **35**, 91–103.
 SHELDICK, G. M. (1976). *SHELX76*. Program for crystal structure determination. Univ. of Cambridge, England.
 TRUEBLOOD, K. N. (1984). Program *THMB6*. Univ. of California, Los Angeles, USA.
 WIECKOWSKI, T. & KRYGOWSKI, T. M. (1985). *Croat. Chem. Acta*, **58**, 5–14.

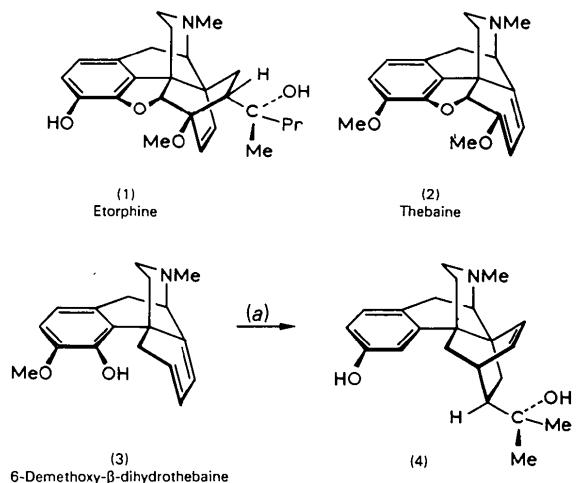
Acta Cryst. (1987). **C43**, 2384–2386

Structure of a New Deoxygenated Etorphine Analogue

BY H. VAN KONINGSVELD

Laboratory of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

AND J. C. JANSEN, M. OVERHAND, T. S. LIE AND L. MAAT


Laboratory of Organic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

(Received 3 June 1987; accepted 15 July 1987)

Abstract. (+)-3-Hydroxy- $\alpha,\alpha,17$ -trimethyl- $6\beta,14\beta$ -ethenomorphinan-7 β -methanol, $C_{22}H_{29}NO_2$, $M_r = 339.5$, orthorhombic, $P2_12_12_1$, $a = 7.810(2)$, $b = 14.152(2)$, $c = 16.705(4)$ Å, $V = 1846.4$ Å 3 , $Z = 4$, $D_x = 1.23$ Mg m $^{-3}$, Mo $K\alpha$, $\lambda = 0.71069$ Å, $\mu = 0.083$ mm $^{-1}$, $F(000) = 736$, $T = 293$ K, $R = 0.040$ for 2387 observed [$I > \sigma(I)$] reflections. The etheno bridge is in the $6\beta,14\beta$ position and the dimethylmethanol substituent is in the 7 β position of the morphinan skeleton, confirming that the title compound is a novel deoxygenated etorphine analogue.

Introduction. Etorphine, (–)-(R)-4,5 α -epoxy-3-hydroxy-6-methoxy- $\alpha,17$ -dimethyl- α -propyl-6 $\alpha,14\alpha$ -ethenomorphinan-7 α -methanol (1) is a semisynthetic analgesic which is approximately 1000 times more potent than morphine; however, it has undesirable side effects. It is prepared from the opium alkaloid thebaine (2) (Lewis, Bentley & Cowan, 1971). In our search for the synthesis of etorphine analogues with fewer oxygen-containing substituents we started from 6-demethoxy- β -dihydrothebaine [6,7,8,14-tetrahydro-3-methoxy-17-methylmorphinan-4-ol, (3)]. Diels–Alder reaction with methyl vinyl ketone afforded 7 β -acetyl-3-methoxy-17-methyl-6 $\beta,14\beta$ -ethenomorphinan-4-ol (van Koningsveld, Lie & Maat, 1984). In order to remove the hydroxyl group in position 4, it was converted into the phenyl ether through an Ullmann reaction with bromobenzene, followed by treatment with sodium in liquid ammonia. The methanol substituent on position 7 β was obtained from the acetyl substituent by means of a Grignard reaction with methyl magnesium bromide. Finally, the methyl ether in position 3 was

hydrolyzed with potassium hydroxide in boiling 1,2-ethanediol. It is plausible that during the Ullmann reaction or the treatment in liquid ammonia epimerization of the acetyl substituent in position 7 β could occur. The single-crystal X-ray analysis of the end product (4), reported here, proved that the methanol substituent was still in the 7 β position.

(a) (i) $CH_2 = CHCOCH_3$, (ii) $PhBr$, (iii) $MeMgBr$, (iv) KOH / CH_2OHCH_2OH

Experimental. Title compound was prepared in the Laboratory of Organic Chemistry (Linders, Kokje, Overhand, Lie & Maat, 1987). Crystals grown from hexane/diethyl ether, m.p. 457–459 K, $[\alpha]_D^{25} + 55^\circ$ [chloroform/ethanol 9:1, 0.7 g dm $^{-3}$]. D_m not